

Type FR: TP9

Évolution 2007-2023 de la qualité annuelle des cours d'eau

Station: 04532001 - RAU BATREAU A INGRANDES

Station: 04532001 Libellé: RAU BATREAU A INGRANDES

Réseaux : RCO Localisation : LIEU-DIT LE MOULIN DE SAINT-USTRE

Coordonnées : X = 516285 ; Y = 6645559 - Projection RGF93 / Lambert 93 (m)

Station représentative : Commune : Ingrandes

Exception typologique COD : Département : Vienne Région : Poitou-Charentes

Exception typologique pH: Masse d'eau: FRGR2020 - LE BATREAU ET SES AFFLUENTS DEPUIS LA SOURCE JUSQU'A LA

CONFLUENCE AVEC LA VIENNE

Objectifs environnementaux : SDAGE 2022-2027

Objectif écologique : Objectif moins strict
Objectif chimique : Bon état
Délai : 2027
Délai : 2021

Pressions significatives : État des lieux 2019

Pression nitrates : Non Pression hydrologie : Oui
Pression pesticides : Oui Pression morphologie : Oui

Pression pesticides : Oui Pression morphologie : Oui Pression macropolluants : Non Pression continuité : Oui

Pression micropolluants: Non

ÉTATS ÉCOLOGIQUE ET CHIMIQUE À LA MASSE D'EAU

validés par le comité de bassin au 15 décembre 2019

ÉTAT ÉCOLOGIQUE

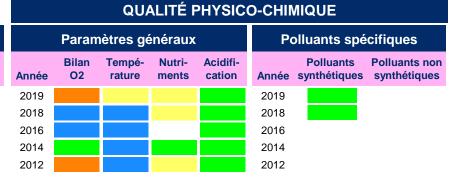
(évalué à la station représentative 04532001)

ÉTAT CHIMIQUE

(uniquement pour les stations RCS)

L'état validé conformément à l'arrêté évaluation du 18 juillet 2018 repose principalement sur la chronique de données 2015-2016-2017. Les détails sont disponibles à l'adresse suivante : https://donnees-documents.eau-loire-bretagne.fr/home/donnees/etat-2017-cours-deau.html

QUALITÉ ANNUELLE À LA STATION


QUALITÉ ÉCOLOGIQUE Qualité physico-chimique Qualité Qualité **Paramètres Polluants** Année écologique biologique spécifiques généraux 2019 2018 2016 2014 2012

QUALITÉ CHIMIQUE

(uniquement pour les stations RCS)

QUALITÉ ÉCOLOGIQUE ANNUELLE À LA STATION

QUALITÉ BIOLOGIQUE Diato-Macro-Phyto-Inver-Année mées tébrés **Poissons** phytes plancton 2019 2018 2016 2014 2012

Source de données : OSUR Réalisation : Aquascop

Évolution 2007-2023 de la qualité annuelle des cours d'eau

DÉTAIL DE LA QUALITÉ ÉCOLOGIQUE ANNUELLE À LA STATION

	QUALITÉ BIOLOGIQUE												
Diatomées				Invertéb			Poiss	ons	Macrop	hytes	Phytoplancton		
Année	IBD	Mois	I2M2	Mois	IBG GCE	Mois	I2M2 CEP Mois		IPR	Mois	IBMR	Mois	IPHYGE
2019	15,6	05	0,4844	05					18,54	07	9,07	06	
2018	14,6	06	0,5751	06					19,27	05	8,64	07	
2016													
2014	15,1	07	0,664	07					15,27	06			
2012													

	QUALITÉ DES PARAMÈTRES PHYSICO-CHIMIQUES GÉNÉRAUX														
		Bilan de l	'oxygène	•			Nutriments					Acidif	Acidification		
Année	02	Tx O2	DBO5	COD	Températu	re P)4 F	Ptot	NH4	NO2	NO3	pH min	pH max		
2019	7,27	79,5	2,2	14,3	22,2	0,8	55 (0,4	0,076	0,17	42	7,63	8,5		
2018	9,6	99,7	1,9	4,4	19,1	0,6	02 0),21	0,04	0,15	41	7,92	8,3		
2016	9,2	92			16,3							8	8,4		
2014	10,13	88,3	3	5,67	17,3	0,	26 0),11	0,18	0,22	43	8	8,3		
2012	10,38	106	3,3	14,4	18,4	0,7	31 0,	,321	0,07	0,15	31	8,2	8,35		

					QU.	ALITÉ	DES	POLL	UANT	S SPÉ	CIFIQ	UES					
	Polluants synthétiques											Pollu	Polluants non synthétiques				
Année	Chlortoluron	Oxadiazon	2,4 MCPA	2,4 D	Métazachlore	Aminotriazole	Nicosulfuron	AMPA	Glyphosate	Diflufénlicanil	Boscalid	Métaldéhyde	Toluène	Arsenic	Chrome	Cuivre	Zinc
2019	0,008	0,0025	0,001	0,0013	0,0019	0,0143	0,0071	0,1271	0,0943	0,0036	0,01	0,1176	0,05				
2018	0,0019	0,0025	0,0011	0,002	0,003	0,0229	0,0025	0,07	0,12	0,0019	0,0023	0,01					
2016																	
2014																	
2012																	

Source de données : OSUR Réalisation : Aquascop

Évolution 2007-2023 de la qualité annuelle des cours d'eau

Station: 04532001 - RAU BATREAU A INGRANDES

Station: 04532001 Libellé: RAU BATREAU A INGRANDES

Réseaux : Localisation : LIEU-DIT LE MOULIN DE SAINT-USTRE

Coordonnées : X = 516285 ; Y = 6645559 - Projection RGF93 / Lambert 93 (m)

Station représentative :
Commune : Ingrandes

Exception typologique COD : Département : Vienne Région : Poitou-Charentes

Exception typologique pH: Masse d'eau: FRGR2020 - LE BATREAU ET SES AFFLUENTS DEPUIS LA SOURCE JUSQU'A LA

Type FR: TP9 CONFLUENCE AVEC LA VIENNE

Objectifs environnementaux : SDAGE 2022-2027

Objectif écologique : Objectif moins strict
Objectif chimique : Bon état
Délai : 2027
Délai : 2021

Pressions significatives : État des lieux 2019

Pression nitrates : Non
Pression pesticides : Oui
Pression macropolluants : Non
Pression continuité : Oui

Pression micropolluants: Non

SYNTHÈSE ANNUELLE PESTICIDES

En complément de l'évaluation de l'état, la contamination des eaux par les pesticides est appréhendée par l'étude des substances quantifiées (diversité et récurrence) et des plus fortes concentrations mesurées (par substance individuelle et substances cumulées).

Pour de plus amples informations, se reporter à la note explicative de la fiche.

	SUIVI, QUANTIFICATION ET DÉPASSEMENT DE SEUIL										
			Ana	alyses	Т	Taux d'analyses (%)					
Année	réalisés	> LQ	> 0,1 µg/l	> SR	réalisées	> LQ	> 0,1 µg/l	> SR	> LQ	> 0,1 µg/l	> SR
2019	7	7	7	0	3169	150	29	0	4,73	0,92	0
2018	7	7	7	0	2723	101	19	0	3,71	0,7	0

LQ : limite de quantification S

SR : seuil de référence.

Les résultats relatifs aux dépassements de seuils ne sont disponibles qu'à partir de l'année 2015.

	USAG	ES DES	SUB	STAI	NCES	QUA	NTIFIÉES	SET	EN D	ÉPAS	SEM	ENT DE S	EUIL				
		Subst	tances	> LQ		S	Substances > 0,1 μg/l						Substances > SR				
Année	recherchées	Total	Н	- 1	F	R	Total	Н	- 1	F	R	Total	Н	- 1	F	R	
2019	453	50	36	5	9	0	11	10	1	0	0	0	0	0	0	0	
2018	389	35	26	4	5	0	4	4	0	0	0	0	0	0	0	0	

LQ : limite de quantification SR : seuil de référence H : herbicide I : insecticide F : fongicide R : rodenticide. Les résultats relatifs aux dépassements de seuils ne sont disponibles qu'à partir de l'année 2015.

TOP 10 DES SUBSTANCES LES PLUS FRÉQUEMMENT QUANTIFIÉES Substance et taux de quantification (%) Année 10 Atrazine (100) Métazachlore Metolachlor **AMPA (100)** Atrazine Métazachlore **Boscalid** 2019 Atrazine Glyphosate Sulfosate déséthyl (100) ESA (85,71) déisopropyl ESA (100) (85,71)OXA (71,43) (71,43)(71,43)déséthyl (85,71)**Diflufenicanil** Dinitrocresol 2018 Métazachlore Metolachlor Atrazine Atrazine (100) 2,6-Metolachlor **AMPA (100) Glyphosate** ESA (100) ESA (100) déséthyl (100) Dichlorobenza OXA (71,43) (85,71)(57,14)(57,14)mide (85,71)

Couleur : Herbicide Insecticide Fongicide Rodenticide Gras : polluant spécifique de l'état écologique

TOP 10 DES SUBSTANCES AVEC LES PLUS FORTES CONCENTRATIONS MESURÉES Substance et plus forte concentration mesurée (en µg/l) 5 9 10 1 6 8 Année Métaldéhyde Métazachlore 2019 Glufosinate Metolachlor Sulfosate Métazachlore Metolachlor AMPA (0,24) Glyphosate Atrazine (1,4)ESA (0,758) (0,511)ESA (0,373) (0,32)OXA (0,317) OXA (0,259) (0.22)déséthyl (0,14)2018 Aclonifène Prosulfocarbe Metolachlor **Glyphosate** Atrazine AMPA (0,11) Aminotriazol Acétochlore Métazachlore Métolachlore ESA (0,277) déséthyl ESA (0,043) ESA (0,032) (0,025)(0,02)(0,019)(0.18)e(0,06)(0,174)

Couleur : Herbicide Insecticide Fongicide Rodenticide Gras : polluant spécifique de l'état écologique

Évolution 2007-2023 de la qualité annuelle des cours d'eau

	PLUS FORTES CONCENTRATIONS CUMULÉES									
Année	Concentration cumulée (µg/l)	Nombre de sub- stances cumulées	Mois d'observation							
2019	2,6346	33	Novembre							
2018	0,819	24	Mai							

Source de données : OSUR Réalisation : Aquascop